Last Name

First name

Student Number

PHARMACY 324 PHARMACOKINETICS

Student Number

Term #1 EXAM December 15th, 2005

Examination time is 3 hours

[This examination contains 14 pages (not including equations and extra graph paper)]

BUDGET YOUR TIME! WATCH THE VALUE OF THE QUESTIONS! *PLEASE PLACE YOUR NAME ON EACH PAGE*

Please read the ensuing examination questions and data provided <u>carefully</u> before attempting any calculations. <u>Show all your calculations</u>. <u>Use the back of the exam pages if necessary</u>. All <u>mathematical calculations should be written and organized in a logical, neat order</u>. Double-check all your answers where possible. Please express your final answers to three significant figures unless specified **otherwise**. If necessary, graph paper can be found at the back of this examination.

- **<u>NOTE:</u>** 1. This exam is worth **35% of the final overall grade** in PHM 324. Please note however that the value of all questions total **100** marks.
 - 2. The allotment of marks for each question is indicated beside each question.
 - 3. Potential equations needed to answer the questions are found in the equation booklet.
 - 4. Graph paper is found in the body of the exam. If you require more, you must ask for it.
 - 5. This exam is designed to test your knowledge of pharmacokinetics and possibly even teach you about its use in problem situations. Some issues may be presented which were not specifically dealt with in lectures, but the context of the question should make their meaning clear.

<u>WHERE IT APPEARS NECESSARY,</u> <u>STATE YOUR ASSUMPTIONS WHEN ANSWERING A QUESTION.</u> IF SUCH ASSUMPTIONS ARE VALID THEY WILL BE CONSIDERED IN THE GRADING.

Name	٠
INAIIIC	٠

Name : _		Student Number	•
	Last Name	First name	Student Number

QUESTION 1: (35 marks)

In each of the following questions some information is given. Answer each question based on the DATA provided.

[1]	(i)	DATA	At 2.5 hours after an IV bolus dose of 2000 mg of ceftriaxone the concentration is 10 mg/L. The concentration 3 half-lives later is
			<u>1.25 ± 0.00</u> mg/L. (2 decimal places)
[1]	(ii)	DATA	V = 100 LDose = 300 mgK = 0.01 hr-1
		The $AUC_{0-\infty}$	s <u>300.00</u> \pm 0.00 mg*hr/L (2 decimal places)
			$[]_0 = dose/V = 300 \text{ mg}/100\text{L} = 3 \text{ mg/L}$ AUC _{0-\infty} = $[]_0 / \text{K} = 3 \text{ mg/L} / 0.01 \text{ hr-1} = 300.00 \text{ mg*hr/L}$
[1]	(iii)	DATA Following an	oral dose of 100 mg the following concentrations were observed: $C_{0.5} = 2.5 \text{ mg/L}$ at time 0.5 hr $C_{1.0} = 6.1 \text{ mg/L}$ at time 1.0 hr
		The AUC _{0.5 –}	1.0 is <u>2.15 \pm 0.00</u> mg*hr/L (2 decimal places)
		$AUC_{0.5-1.0} =$	(C1+C2)/2)(t2-t1) = ((2.5+6.1)/2)(1.0-0.5) = (4.3)(0.5) = 2.1
	(iv)	DATA Following an	IV bolus dose the following information is known:Dose (IV)= 200 mg K= 0.1155 hr-1 Volume= 60 L Dosing Interval= 8 hr
[1]	The c	oncentration at $Ct = (dose/V)$	0.5 hours is <u>3.15 ± 0.02</u> mg/L (2 decimal places). e(-kt) = 200 mg/60L)e(-0.1155* 0.5) = 3.146 mg/L
[1]	The a	mount remainin $C_{amt} = (dose)$	in the body at 8 hours is $\frac{79.39 \pm 0.02}{1000}$ mg (2 decimal places). e(-kt) = $(200 \text{ mg})e(-0.1155*8)$ = 79.385 mg
[2]	3 hou	rs after the 3 rd I	V bolus dose, the concentration is 3.66 ± 0.02 mg/L.

5

Na	me :			Student Number	
		Last Name	First name		Student Number
[1]	(v)	DATA	$ke = 0.06 hr^{-1}$		
			$kme = 1.5 hr^{-1}$		
			$K = 0.08 hr^{-1}$		
			$km = 0.01 hr^{-1}$		

The metabolite will have a terminal phase half-life of; $\frac{8.66 \pm 0.01}{1000}$ hr.(2 decimal places). Elimination will be rate limited by K. T¹/₂ = 0.693/0.08 = 8.6625 hr.

[1] (vi) DATA

Following an oral dose, the parent compound is metabolized and excreted into the urine and the following information is known:

 $ke = 0.07 \text{ hr}^{-1}$ $kme = 1.5 \text{ hr}^{-1}$ $ka = 0.08 \text{ hr}^{-1}$ $km = 0.05 \text{ hr}^{-1}$

The parent compound will have a terminal phase half-life of: 8.66 ± 0.01 hr. (2 decimal places). Assume all individual rate constants are shown. K = ke+km = 0.05 + 0.07 = 0.12 hr-1 Therefore, the slowest exponential for parent compound is ka. T¹/₂ = 0.693/0.08 = 8.6625 hr.

[2]	(vii)	DATA	Dose = 200 mg
			Cmax = 8.58 mg/L
			Tmax = 3.8 hr
			AUC = 93.154 mg*hr/L
			$\mathbf{F} = 0.8$
			K = 0.1155 hr-1

The volume of distribution for the parent compound is: 14.87 ± 0.02 L. (2 decimal places). Clearance = F*Dose/AUC and KV. Therefore, V = F*Dose/K*AUC V = F*Dose/K*AUC = 0.8 * 200 / 0.1155 * 93.154 = 14.8708 L

[1]	(viii)	DATA	Dose (IV - bolus)	= 200 mg
			Volume	= 50 L
			Half-life	= 5 hr
			Dosing Interval	= 8 hr
		The Maxin	num Accumulation Fact	or is 1.492 + 0.008 . (3

The Maximum Accumulation Factor is 1.492 ± 0.008 . (3 decimal places). K = 0.693/5 = 0.1386 hr-1 Equation: MAF = (1/1-e(-KJ)) = (1/(1-e-(0.1386*8))) = 1.4924

Name : Student Number			Student Number	
]	Last Name	First name	Student Number
	(*)	-	~ ~~	• • •
[2]	(ix)	DATA	Dose (IV - bolus)	= 200 mg
			Volume	= 50 L
			Half-life	= 5 hr
			Dosing Interval	= 8 hr
		The end of $K = 0.602/5$	interval (trough) concer	ntration at Steady State is: $\frac{1.97 \pm 0.01}{1.97 \pm 0.01}$ mg/L. (2 decimal places).
		$\mathbf{K} = 0.095/3$	0 = 0.1380 III-1	$10/(1 \circ (KI)) \log (1t)$ 1070 m σ/I
		Equation: C	L = (dose/V) [((1-e)(-nK))]	J/(1-e(-KJ)))e(-KI) = 1.970 mg/L
		By Summar	tion: $Ct@ 8 hrs = 1.319$	$8 \qquad Ct@ 10 \text{ nrs} = 0.4355$
			Ct@ 24 nrs = 0.143	7 $Ct@ 32 \text{ nrs} = 0.04/4$
	2.1 6	0.0.1	Ct@ 40 hrs = 0.0150	5 Ct@ 48 hrs = 0.0052
Ct@ 8	s hrs aft	er SS dose =	1.3198+0.4355+0.1437	+0.0474+0.0156+0.0052 = 1.9672 mg/L
[1]	(y)	ДАТА	Dose	– 200 mg
[1]	(A)	DATA	Volume	- 50 I
			Holf life	-30 L
			Ko	$-2 \ln -0.2 hr 1$
			Na Docing Interval	-0.2 III-1
		Following	Dosnig interval	- 0 III
		Following I	initiple 200 mg oral do	thin 11.42 to 11.51 hours
		State concer	-0.2465 hr 1 and $k_0 = 0.2465$	$\frac{11.45 \text{ to } 11.51}{\text{ therefore, this prefile is rate limited by Is}$
		$\mathbf{K} = 0.093/2$	L = 0.3403 III - 1 allu Ka =	- 0.2 m-1. Therefore, this prome is rate minieu by Ka
		$T_1 = 0.002$	35 will be determined t	Jy Ka. 90% of eventual steady state occurs after 5.522 ± 72 .
		1/2 = 0.093	0/0.2 = 5.403 mr. 90% 0	1.55 after 3.522 half lines = 3.52283.403 = 11.51 Hr.
			01 90	% of SS after 5.5 fian-fives = $5.5x5.405 = 11.45$ fir.
[1]	(xi)	DATA	Dose, oral	= 200 mg
[+]	(200)		E (fraction abs.)	= 0.9
			Volume	-50 I
			Half_life	-7 hr
			Ka	-1.0 hr
			Dosing Interval	- 8 hr
		True or Fal	Eollowing multiple	200 mg oral doses given every 8 hours the eventual steady
		state trough	concentrations (Cmin-	$_{z}$) can be determined accurately to hours, the eventual steady
				s) can be determined accurately [*] by MAP.
	MAE	I U	r iv bolus dosing and i	mmediate release (rapidly absorbed) products. The K
	voluo	$i_{\rm c} = 0.000 \text{br} 1$	which indicated a ka/k	ratio of 10, also an indicator that MAE will work
	Furth	150.077 m^{-1}	is less error with Cmin	than Cmay. Therefore, True is the correct answer
	Ition	et intended th	is less entor with clim	the colculation, but actual comparison of estimated
		and observed	from multiple desing a	the calculation, but actual comparison of estimated
	MAF	and observed	i from multiple dosing e	quation indicates that the error is ~0.05%.
	(xii)	DATA	Following a 500 mg	IV bolus dose, samples are drawn and the blood
			concentration deterr	nined. Analysis reveals that the concentration can be
			described by the foll	lowing equation.
			$C = 1 C \Omega$	4 - 5.0(t) + 2 - 0.2(t)
			$C_t = 16.04$	$4 e^{-1} + 3.90 e^{-1}$

[1]	What is the initial concentration, immediately following the bolus	dose 20.00 ± 0.00 mg/L
[1]	What is the initial distribution space $(V1) = \underline{25.00 \pm 0.00}$ L	500 mg / 20 mg/L
[1]	What is the Area Under the Curve $(0-\infty)$ (AUC _{0-∞}) = 23.01 ± 0.01	$mg^{hr/L} (A/\alpha + B/\beta)$

Na	me :			Stu	udent Number
Last Name			First name	-	Student Number
	(xiii)	DATA	Following a 500 mg IV b concentration determined concentrations in each pa equations, which match 1 Concentrations are shown as This problem can be solv	olus in 4 tient of t ope ed b	as dose, samples are drawn and the blood 4 different patients. Analysis reveals that the nt can be described by one of the following f the 4 graphs. Match the equations & graphs. Seen diamonds and residuals are shown as open squares by visual inspection of the profiles and the
[1] [1] [1] [1]	Patien Patien Patien Patien	$\begin{array}{rl} t \ A & C_t = 7.5 \\ t \ B & C_t = 5.0 \\ t \ C & C_t = 9.0 \\ t \ D & C_t = 9.5 \end{array}$	Values A, B, α and β . It is 9 e ^{-1.0(t)} + 2.1 e ^{-0.05(t)} which co 6 e ^{-0.5.0(t)} + 4.5 e ^{-0.05(t)} which co 6 e ^{-4.0(t)} + 0.39 e ^{-0.1(t)} which co 2 e ^{-2.0(t)} + 0.79 e ^{-0.1(t)} which co	s mo orres corres orres orres	nost easily completed by an evaluation of B.esponds to graph1,2,3, or4responds to graph1,2,3, or4responds to graph1,2,3, or4responds to graph1,2,3, or4
1				2	
10 1 7,6 E 0 0	.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mg/L	10.00 1.00 0.10 0.01

mg/L

10.00

1.00

0.10

0.01

Hours

Hours

Nam	ne :		Student Number	Student Number					
	L	ast Name.	First name	1	Student	Number			
	(xiv)	DAT	A Following a 500 mg oral dose, samples are draw concentration determined in 4 different patients concentrations in each patient can be described equations, which match 1 of the 4 graphs. Matc Concentrations are shown as closed diamonds and res This problem can be solved by visual inspection values α (residual slope) and β (terminal phase reported to 2 hours, (K = 0.3465 hr-1) but graph phase because ka rate limits this profile (only ka	wn and by one ch the e siduals a n of the slope). n 2 has a small	the b ysis r of th equation prof Th a slov than	lood reveals ti e follow ions & g own as op iles and e half-li wer term 0.3465	hat the ying graphs. Den squares the fe is hinal is for	5	
[1]	Patient	t A	$ka = 2 \text{ hr}^{-1}$ and Half-Life = 2 hrs, corresponds to graph	1,	2,	3 , or	4		
[1]	Patient	t B	$ka = 1 hr^{-1}$ and Half-Life = 2 hrs, corresponds to graph	1,	2,	3, or	4		
[1]	Patient	t C	$ka = 0.5 \text{ hr}^{-1}$ and Half-Life = 2 hrs, corresponds to graph	1,	2,	3, or	4		
[1]	Patient	t D	$ka = 0.1 hr^{-1}$ and Half-Life = 2 hrs, corresponds to graph	1,	2,	3, or	4		

Na	ame :		Student Number			
	I	ast Name	First name	Student Number		
[1]	(xv)	DATA At Steady S By Equation If we use 72 approaches	Infusion Rate Volume Clearance tate ($t > 72$ hr) the con h: Ct = (K0/(KV))*(1-e c hrs as t, then Ct = 4.99 zero and (1-e-Kt) appr	= 50 mg/hr = 72.15 L = 10 L/hr centration will be 5.00 ± 0.05 mg/L (2 decimal places) -Kt) where t is infusion duration. 98 mg/L. If we assume t is large, then the (e-Kt) paches 1. This will yield a concentration of 5.0 mg/L		
[1]	(xvi)	DATA Two hours a By Equation when Ct = 1.613 r	Dose Infusion duration Clearance Half-life <i>after the end</i> of a 4-hou h: $Ct = (K0/(KV))^*(1-e)$ re t is infusion duration mg/L	= 200 mg = 4 hr = 10 L/hr = 5 hours r infusion the concentration is 1.61 ± 0.05 mg/L (2 decimal places). -Kt)*(e-Kt') and t' is the post infusion time		
[1]	(xvii) (a) Wha I Initial Co Volume = = =	DATA t is the Volum Distribution (1) nc = 40 mg/L = Dose/ Conc = 400 mg / 40 = 10 L ± 1.0	Following a 400 mg serum concentration concentrations. ne of L)?	IV dose of moxifloxacin to Mr. BB, the following s are observed. The graph below plots these $100.0 \frac{80 \text{ mg/L}}{10.0 \text{ mg/L}} B$		
[1] 2 3 3 4 9 6 0 0	(b) Wha By inspec 40 mg/L a after 12 ho life of 6 ho correspon- (range 0.1	t is K (hr-1)? tion initial co nd it declines burs (2 half-li burs. \pm 0.5 hi ding K value 066 - 0.1260	ncentration is s to 10 mg/L ves) or a half- r. The is 0.1155 hr^{-1} hr^{-1})	$\begin{array}{c} 20 \text{ mg/L} \\ 1.0 \\ 0 \\ 4 \\ 8 \\ 12 \\ 16 \\ 20 \\ 24 \\ Hours \end{array}$		
[1]	(c) What ciprofloxa Clearance = 0.1155	is the total cl cin in Mr. BI = KV x 10 = 1.152	earance of 3.(L/hr)? 5 L/hr _± 0.5	arly identified as line A and D		
[2]	 On the graph above, draw 2 more lines clearly identified as line A and B. (d) Draw Line A which will represent a moxifloxacin profile where the distribution space is twice that observed in Mr. BB but the half-life is identical to that observed in Mr. BB. Line A must have an intercept of 20 mg/L and a slope parallel to the original line (e) Draw Line B which will represent a moxifloxacin profile where the distribution space is half that observed in Mr. BB but the clearance is identical to that observed in Mr. BB. Line B must have an intercept of 80 mg/L and a greater slope than the original line (intersection of the x-axis <i>close</i> to coordinates of 1 mg/L & ~ 20 hrs is acceptable. 					

Last Name

QUESTION 2. (20 Marks)

A patient is given an IV bolus dose of 400-mg of ketorolac. One blood sample is drawn and the plasma concentration determined as is the concentration for 2 urine collections. The observed data is shown in the table below.

First name

Time (hr)	Plasma Concentration (mg/L)	Urine Collection Period (Start – Stop in hrs)	Excretion Rate (mg/hr)
1	4.45		
2		0-2 hours	33.0
4			
6		2 - 6 hours	23.5
8			

[2] (i) Calculate the elimination rate constant (K) 0.113 ± 0.002 hr-1. This must be determined from urine data, specifically the slope of the Ln (or L)og of the excretion rate plotted at the midpoint of the collection interval. (Ln(33)-Ln(23.5))/(4-1) = 0.113169 hr-1. when using Log the slope must be multiplied by 2.303 to get the K value.

[2] (ii) Calculate the volume of distribution (L). $\underline{80.27 \pm 0.50}$ L with a K value of 0.113 hr-1, the initial concentration is estimated as 4.98 mg/L (range: 4.96 – 5.00 mg/L). Given a 400 mg bolus dose the volume is estimated as 80.27 L (range 80.00 –80.65 L) **2 marks** for the correct answer. With the wrong answer, **1 mark** will be awarded if **both** equations are provided (half mark each): $C_0 = e^{(+Kt)}$ where t = 1 hr and Volume = Dose/C₀.

- [2] (iii) What is the AUC_{0- ∞} (mg*hr/L)? <u>44.03 ± 2.0</u> mg*hr/L Given the initial concentration of 4.98 mg/L (range: 4.96 – 5.00 mg/L) and a K value of 0.113 hr⁻¹ (range (0.110 – 0.115 hr-1), the AUC is 44.033 mg*hr/L (range: 43.1 – 45.45 mg*hr/L) **2 marks** for the correct answer. With the wrong answer, **0.5 marks** will be awarded if this equation is provided: AUC_{0- ∞} = C₀/K.
- [2] (iv) Calculate Total Body Clearance (L/hr). 9.084 ± 0.500 L/hr Clearance can be calculated by either K xV or Dose/AUC. The central answer based on possible estimates of both methods is 9.0840 L/hr (range: 8.800 – 9.2742 L/hr). 2 marks for the correct answer. With the wrong answer, 0.5 marks will be awarded if either one of these two equations is provided: $Cl_T = K \times V$ or $Cl_T = Dose/AUC$.
- [2] (v) At 8 hour, how much drug (mg) remains in the body? <u>161.76 \pm 5.00</u> mg with a K value of 0.113 hr-1, and a 400-mg dose given by IV bolus, the amount remaining at 8 hours is: Amount (t) = dose e-kt where t = 8 hours. The central answer based on possible estimates is 161.76 mg. (range: 159.408 165.913mg). **2 marks** for the correct answer. With the wrong answer, **0.5** marks will be awarded if the equation is provided: $C_0 = e^{(-Kt)}$
- [4] (vi) The renal clearance of ketorolac is 7.41 ± 0.20 L/hr. Renal clearance is calculated based on the slope of the line between urinary excretion rate and the mid-point plasma concentration. However, although there is only 1excretion rate (33.0 mg/hr) and mid point plasma concentration (4.45 mg/L), this can still be used to estimate renal clearance. This graph should go through an excretion rate of 0 with a plasma concentration of zero. Therefore, Renal clearance = 33.0 / 4.45 = 7.416 L/hr

Nam	ie :	Student Number		
	Last Name	First name	Student Number	
	It is also possible to est	timate the concentration at 4 hou	ars and with a range in potential K values,	
	this will yield a range of	of renal clearance values from 7.	.317 to 7.595 L/hr.	
	4 marks for the correc procedure or equation	t answer. With the wrong answer is provided: $Cl_R = Excretion Rat$	er, 1 mark will be awarded if the proper te / Mid Point Concentration.	
[2]	(vii) The proportion This can be calculated	of ketorolac excreted unchanged based on the ratio of clearances	d in the urine is 81.63 ± 5.0 %. (renal : total body), the ratio of Ae _{0-∞} to	
	Dose or the ratio of ke/ clearances (renal: total	K. However, we only have info body).	ormation to allow calculation of the ratio of	
	Therefore, the proporti	on of ketorolac excreted unchan	ged in the urine is:	
	Proportion $= 7.416$	9.084 = 0.8163, with a potential	l range of 0.7889 to 0.8631.	
	And when expressed as	s a percent the central value is 8	1.63% with a range of 78.89 – 86.31%	
	2 marks for the correc procedure or equation is	t answer. With the wrong answers provided: Percent = 100 x Cl_R	er, 0.5 marks will be awarded if the proper $\frac{1}{2}$ / Cl _T .	
Г / Л	(wiii) Decad on this is	formation available in the Tabl	a on the provious page and that which you	

[4] (viii) Based on this information available in the Table on the previous page and that which you have determined through calculation, draw a model labeled with the rate constants (eg. ke, km or knr) *and* their values with units of hr^{-1} .

Based on a K value of 0.1132 hr-1 (range 0.1100 - 0.1150 hr-1), the ke value is ~81% of this value: 0.0924hr-1 (range 0.0868 - 0.0993 hr-1) And the knr value will be the difference between K and ke ... therefore:

	Central answer	Lowest acceptable	Highest acceptable
K (hr-1)	0.1132	0.1100	0.1150
ke(hr-1)	0.924	0.7889	0.0993
By difference			
knr (hr-1)	0.0208	0.0208	0.0157

3 marks given for the labeled model, **1** for a single circle or square, **1** showing IV bolus or IV or IV dose input, **1** for two elimination pathways of ke and knr (half mark each) and **1** mark given for the calculation of knr and placing this value somewhere on the page.

Student Number

Last NameQUESTION 3(16 Marks)

Selegiline (S) is excreted into the urine unchanged and is metabolized to 3 different metabolites (amphetamine, methamphetamine and N-desmethyl deprenyl) that appear in both urine and feces. After extensive research, the following metabolic scheme has been determined following a 10-millimole IV dose. The population average first order rate constants for each process are shown with units of hr-1.

First name

[1 0 [†]	1 (i) Com	plete the	table	below	based	on this	metabolic	scheme.
110	I (I	, com	piece une	luoie	0010 %	ouseu	on uns	metabone	seneme.

Compound	Total Amount Excreted (millmole)	Excretion Location
S	0.01/ (0.40+020+0.01+0.50) = 0.01/1.11 =0.009 10 millimoles x 0.9% = 0.09 millimoles	Urine
M1	Zero	Not Excreted
M2	Zero	Not Excreted
M3	0.04 + 0.20/ (0.40+020+0.01+0.50) = 0.60/1.11 =0.5405 10 millimoles x 0.5405 = 5.41 millimoles	Urine
M4	0.50/ (0.40+020+0.01+0.50) = 0.50/1.11 =0.4505 10 millimoles x 0.4505 = 4.50 millimoles	Feces

- [2] (ii) The Half-life of selegiline averages 0.62 ± 5.0 hr in the population studied. The overall K value for selegiline is (0.40 + 0.20 + 0.01 + 0.50) = 1.11 hr-1. This translates into a half-life of 0.624 hrs.
- [2] (iii) The terminal elimination half-life of M4 is: 0.8349 ± 0.0051 hr. The rate limiting step of M4 into the feces is the smaller of the K (1.11) and kme (0.83). Therefore kme rate limits the process producing a terminal elimination half-life of 0.8349 hrs
- [2] (iv) At 4 hours after an IV dose, which compound(s) are present in plasma? More than 90% of the amount of M1 and M2 formed would still be in plasma at 4 hours. 1 mark for each of these compounds. Only about 1% of the initial concentration of selegiline would be present. No marks for selegiline. M3 & M4 are excreted rapidly once formed and so it is likely that either is never detected in plasma. No marks for M3 or M4. If a student lists four or all compounds ... they should be awarded only 1 mark (1 each for M1 & M2 less ½ for each of 2 others).

Name :

Student Number

QUESTION 4 (15 marks)

Last Name

200-mg of ketoconazole, an antifungal agent of the imidazole class, was administered to 20 healthy volunteers under 3 different conditions. Each condition (treatment) was separated by 1 week. The three conditions/treatments were;

First name

- (i) A single 200-mg dose administered by rapid IV bolus. Blood samples were drawn following the dose and for the next 8 hours (0-8 hrs).
- (ii) Following an overnight fast, 200 mg was administered orally with 250 mL of water every eight hours. Four doses were administered. Blood samples were drawn following the dose administered at 24 hours and the concentrations determined over the following 8-hour period. (24-32 hrs)
- (iii) Following an overnight fast, 200 mg was administered orally with 250 mL of a cola beverage every eight hours. Four doses were administered. Blood samples were drawn following the dose administered at 24 hours and the concentrations determined over the following 8-hour period. (24-32 hrs)

Blood samples drawn during the study were analysed and the serum ketoconazole concentration determined. Mean pharmacokinetic parameters calculated from the 20 subjects for each dose are provided in the table below. You may assume a 1-compartment model with first order elimination for all doses and first order absorption for all oral doses.

	200-mg single Dose	200-mg oral Capsule – Fasting with	200-mg oral Capsule – Fasting with
	IV Bolus	250 mL water Data Following 4 th dose	250 mL Cola Data Following 4 th dose
Cmax (mg/L)	13.33	4.42	7.55
Tmax (hr)	0.01	2.50	1.5
Half-life (hr)	2.0	2.0	2.0
AUC ₀₋₈ (mg*hr/L)	36.06	28.84	34.57
AUC _{0-∞} (mg*hr/L)	38.48	Not reported	Not reported
ka (hr-1)	na	0.25	1.14

Average pharmacokinetic results following 200-mg doses of ketoconazole.

- [2] (i) Based on the IV data, the total clearance of ketoconazole is 5.20 ± 0.01 L/hr. Clearance for IV data can be calculated from Dose/AUC Cl = 200-mg/38.48-mg*hr/L =5.198 L/hr 1 mark for the correct formula and 1 mark for the correct answer
- [3] (ii) The absolute bioavailability (%) of ketoconazole when administered with 250 mL of water is: 74.95 ± 0.10 % Bioavailability can be calculated from a comparison of AUC_{0-inf} following singles doses, or a comparison of AUC_{0-J} (where J is the dosing interval) at steady state. Since AUC_{0-J} at steady state and AUC_{0-inf} following a single dose are equal, then bioavailability may also be calculated based on a comparison of AUC_{0-J} at steady state and AUC_{0-inf}. Therefore, F= 28.84/38.48 = 0.7495 or 74.95%
- 3 marks for the correct answer or 1 mark for using AUC for each of the water and IV treatments.

Name :		Student Number			
		Last Name First name Student Number			
[3]	(iii)	The relative bioavailability (%) of ketoconazole administered with 250 mL of water			
		relative to 250 mL of COLA is: $\frac{83.42 \pm 0.10 \text{ or } 119.87 \pm 0.10}{19.87 \pm 0.10}$			
		Bioavailability can be calculated from a comparison of AUC_{0-J} (where J is the dosing interval) at steady state			
		Therefore $F = 28.84/34.57 = 0.8342$ or 83.425%			
		Since the question could be interpreted or calculated as the inverse $F= 34.57/28.84 =$			
		1.1987 or 119.87%			
		3 marks for the correct answer or 1 mark for using AUC_{0-J} for each of the water and cola treatments.			
[2]	(vi)	The observed terminal half-life following the oral dose administered with 250 mL of water			
		is : 2.77 ± 0.01 hr.			
		The half-life of ketoconazole is 2 hours. This corresponds to a K value of 0.3465 hr-1. In the "with water only fasting treatment", the ka is reported as 0.25 hr-1. This is smaller that 0.3465 hr-1, indicating that in this treatment the concentration – time profile is rate limited by absorption. Therefore, the terminal phase exponential will have a value of 0.25 hr-1 which corresponds to a half-life of 2.772 hours.			
		2 marks for the proper half-life. If half-life is wrong, 1 mark can be awarded for using ka as the terminal phase exponential.			
[2]	(viii)	 If a patient was counseled to ingest all doses of ketoconzaole with 250 mL of COLA rather than WATER, Relative to an ketoconazole dose administered with 250 mL of water, explain the effect on the rate and extend of ketoconazole absorption when it is administered with a cola beverage. Administration of ketoconazole with COLA increases both the rate (as measured by ka or Cmax) and extent (as measured by AUC) of absorption. 			
		 0.5 mark for indicating that COLA increases RATE and 0.5 marks for indicating that is explained by an increase in Cmax or an increase ka 0.5 mark for indicating that COLA increases EXTENT and 0.5 marks for indicating that is explained by an increase in AUC. 			
[3]	(viii)	If a patient was counseled to ingest all doses of ketoconzaole with 250 mL of COLA rather than WATER, Relative to an ketoconazole dose administered with 250 mL of water, what effect would likely be encountered in the Peak-Trough fluctuation? Administration of ketoconazole with COLA increases both the rate (as measured by ka or Cmax) and extent (as measured by AUC) of absorption. Tmax also occurs earlier such that the higher observed peak (Cmax = 7.55 mg/L) occurs 1 hour earlier than the lower peak of 4.42 mg/L. Assuming linear decline in concentration from the peak, the COLA treatment would then have 6.5 hours with a half-life of 2 hours before the end-of-interval trough concentration was obtained (~0.8 mg/L in reality 1.10 mg/L). However, ketoconazole administered with water has a peak of 4.42 mg/L at 2.5 hours and the terminal phase is rate limited by absorption, such the end of interval concentration could be estimated to be 0.657 (in reality 2.3 mg/L). The absolute Peak Trough Fluctuation is lower for ketoconazole administered with water.			

1 mark for indicating that COLA peaks sooner and/or has a greater amount of time to fall to the trough. **1 mark** for indicating that water has a slower terminal phase and less time to fall to the trough and **1 mark** for indicating that the peak trough fluctuation would be lower for ketocoOnazole administered with water.

Name :

Last NameQUESTION 5(14 Marks)

A 40-mg single oral dose of nifedipine PA (Adalat®) is given to a patient. Blood samples were drawn and the plasma concentrations are shown below.

Time	Concentration
(hr)	(ng/mL)
0	0.000
0.25	10.13
0.5	19.92
0.75	29.38
1	38.51
1.5	55.85
2	72.03
3	62.71
4	54.59
5	47.53
6	41.38
8	31.36
12	18.01
16	10.35
24	3.41
32	1.13

First name

[2] (i) On the next page, a piece of 2 – cycle semi-log paper can be found. Graph data on this paper. Label each axis appropriately.

0.5 marks for indicating a y-axis label of "ng/mL" or "concentration ng/mL" and **0.5 marks** if the x-axis label is marked "time", "hours" or time in hours" or equivalent. **1 mark** for accurately plotting the graph. No marks deducted if the 32 hr concentration is not plotted as it will not affect the graph. Graph should show a single terminal phase (straight line) from 2 hours and a concentration of 72 ng/mL. *If the line is not straight, concentrations from 10-100 are plotted on the same cycle as 1-10, this mark will not be awarded.*

- [2] (ii) ON THE GRAPH, label the back-extrapolated time zero concentration clearly. Print "time zero concentration is <u>95.03</u> ng/mL" and with an arrow show how your back extrapolated line runs through this concentration. The intercept is <u>95.03</u>. Award 1 mark for a straight line, super-imposed on the terminal phase and extending back to the y-axis and a second mark if this line intersects the axis anywhere between <u>90 100 ng/mL</u>
- [3] (iii) Describe, in words, a model that appears to satisfy the concentration-time profile. This appears to be a 1 compartment model with zero order input and first order elimination.
 1 mark for 1 compartment model 1 mark for zero order input and 1 mark for first order elimination.
- [1] (iv) The terminal phase half-life observed for nifedipine is: 5.0 ± 0.20 hr.
 - (v) **The concentration** that would be observed at the end of a dosing interval, when doses are administered every eight hours and only:
- [3] 3 doses have been given is 45.12 ± 0.20 ng/mL. (2 decimal places). Concentrations contributing to the end of interval trough concentration are the 8, 16 & 24 hour concentration [31.36 + 10.35 + 3.41 = 45.12 ng/L]
- [3] 4 doses have been given is 46.25 ± 0.20 ng/mL. (2 decimal places). Concentrations contributing to the end of interval trough concentration are the 8, 16, 24 & 32 hour concentration [31.36 + 10.35 + 3.41 + 1.13 = 46.25 ng/mL]

Last Name

First name

Student Number

Student Number